G1l5 PMN: A GENERAL PROGRAMMING LANGUAGE
GOING ALONG WITH A CONCEPT OF A COMPUTER
AND ITS OS
by Aristo Tacoma

A programming language for a digital computer has, as one of its
criteria for existence, that it is meaningful to the human mind.
In contrast, the series of bits, whether assembled into larger
constructs like numbers in some number-system, or not, which
represent coding in a digital CPU, are much less meaningful.

A programming language, in contrast to a menu system for modifying
an existing application on a computer, is something which can
program the very computer itself. That's also one of its criteria
for being a programming language. While it is typical in most
languages that new programs can rely on libraries of earlier



programs in the same language, eg by common names of functions or
variables or whatever, if there is a 'block' of something entirely
different between the programming language and the computer it is
tempting to regard it more as 'application language' and not a
general programming language.

I have seen diagrams which describes the existence of a
programming language as existing not only on top of a CPU (whether
multicore or not), but also on top of a block called, innocently,
a 'file system'. Underneath the file system are the disks and
such. Also, on these diagrams, we see the RAM, and similar.

This innocent label, 'file system', usually, in these days,
involves not only some indices here and there over what may be on
such and such sector of such and such disk, but it is a database
of searchable and hierarchically ordered, dynamically changable
files and folders which have almost nothing to do, conceptually,
with the sequential sectors of the disks or what goes for the
disks. In fact, a file system in these days is a giant
application, requiring an immense set of programs to bridge the
simplistic CPU instructions with the simplistic disk sectors in a
manner that allows a vast hiearchy of folders and files to be
sorted and reorganized and used in all sorts of ways. While it can
be conceded that in many circumstances such extreme database
structures are practical, they stand out as something foreign to
the computer in its core essence and it is not just strange, but
fairly absurd, to erect programming languages that presumes
something so utterly complex in the nature of what has to be
programmed before this programming language.

While a language such as C can be seen to exist, eg in the form of
libraries, in the build-up of the extremely complex databases
called 'file systems', and therefore can be argued to exist in a
manner that does not exactly presume the file system, it is
nevertheless true that in any typical C application, a file system
is presumed also for the C programming effort, and it is more
theoretical that C can be said to be part also of the underlying
database. In most cases, for most programming languages, they are
nowhere near being part of the underlying giant extremely complex
database. They simply assume that it exists as part of the basal
and simple facts of what a computer is all about--and this leads
me to suggest that most so-called general programming languages
aren't general at all. They are more properly 'application
languages'.

With G15 PMN, there is no assumption at all of any underlying file
system. The CPU is assumed to have less than 300 instructions, all



of which are either simple or, given some explanation and thought,
fairly simple. The Gl5 assembly refers to this CPU and to a dozen
disks or so which are divided into one unit only, which it--
similar to the early FORTH implementations in this regard-- calls
'cards'. These are sequentially laid out and identified by a
number from one and up to around two hundred million.

A programming language inevitably involves the use of numbers.
These numbers can often be put in some nameable structure like a
variable, but they should, like the programming language as a
whole and in all its parts, make sense to the human mind. Once a
programming language is being rebuilt to be independent on the
quantity of bits in its numbers, it is also being rebuilt so it no
longer fulfills the essential criterion for it to be a programming
language, as stated initially-- namely, that it makes sense to the
human mind. A number 1like 1,234,567,890, which is somewhat above
one billion makes sense, and fits with the human psychological
attention span which, in the brief 'cartoon' form as psychologists
sometimes put it, is seven plus-minus two items to focus on. The
psychologists can use this to explain why a digit series like
3,839,239,378,282,488,882,878,183,500
doesn't look like a number but rather like a digit series. It's
because it is not meaningful unless one devotes half one's brain
to work on a daily basis with 64-bit numbers. The 32-bit numbers,
on the other hand, go conveniently up to plus minus two billion,
which is, in terms of digits, seven plus two equals nine digits
and make perfect sense.

While there is a fascination in humans for technologies that can
'do more', it is also clear that computers, with the immense power
they have, ought to be under human control and we should not pride
ourselves on efforts that make constructions in the extension of
what was originally computers which one could program in a
meaningful way to monster structures which defy understanding and
so, whether by chaos or by targeted program elements inside such
monster structures, can become a danger to humanity.

So understanding a computer is part of what contributes to natural
ethical lawful use of the computer. This understanding involves
appreciating the power, but also the limit, of the 32-bit number.
Around year 2000, in what I have earlier called the y2000-
compliant Personal Computer, we found the 32-bit Intel 586 chip at
the core of marvellous developments in the software industry.
About two decades earlier, IBM researchers had concluded that
humans work best with bright green monitors. I have taken these
concepts together with--true, what is not yet a real G15 CPU, only
a virtual CPU that relies on the assumption of a hierarchical file



system and another type of CPU underneath for the time being--but
it is at least a principled concept. When Turing introduced the
computer idea, he did it by means of a principled CPU. It took him
a lot of time to actually build one. But each and every
instruction could be talked about and they could even be
programmed with in thought experiments.

In the practical virtual implementation of the G15 CPU, which I
also call a 'PVI', with green-screen tuned to meaningful
parameters in green tones so as to render both artistic beauty and
crisp-clear good text to work with, we have a whole set of
programs all programmed in the G1l5 assembly and the PMN
compiler/interpreter written in G15 assembly on top of it (with
very approximately half the inspiration coming from FORTH). Some
of these programs move cards from here to there or scan cards. But
it is fundamentally a less hierarchical approach, also to RAM. For
with a language 1like Lisp, or with most socalled object- oriented
programming language, RAM is assumed to be a bunch of 'blocks'
which can be created, expanded, and dissolved effortlessly. There
is no such RAM like that in actual physical computers. RAM is even
simpler than disks--it is generally just laid out in one big
sequence, each addressed by (what we presume) is a meaningful
number. In the 32-bit computer concept, which we regard as the
most general computer because it has adequate complexity for human
meaningful tasks of an enormous variety while not being too
complex for human understanding in any bit of it, RAM is addressed
by a 32-bit number. A programming language should be near the
computer structure also in that it treats 'computer memory' the
way it is, rather than the way it ideally could have been given
the ideosyncratic leanings of the makers of the programming
languages. Here, FORTH did it right, and most languages haven't
done it nearly so well, but Rust have picked up some points from
FORTH. And Gl1l5 PMN treats RAM in a straight-forward way, pretty
much like FORTH.

When it comes to keyboard and font, again the human criterion must
come afore: a keyboard is a natural interface with a computer, and
the mouse an ideal companion to the keyboard. With both hands on
the keyboard, moving rapidly as 4-5 finger on each hand clicks
around, it follows that a keyboard of the QWERTY-type at least as
size and quantity of keys go, expanded with some extra useful
function keys here and there, makes most sense. When it comes to
language, a programming language should be near the computer
structure also in the sense that one click on the keyboard should,
for visible characters, result in one visible character rather
than each character being built up by several keyclicks. Most
human languages can be rendered with some precision to a Latin-



like alphabet and English, with few accent marks and an extremely
large vocabulary of intercultural and international definition,
has been found working as an intercultural language to a larger
extent than other proposed alternatives. It is therefore a good
approach for a core computer concept with an essential programming
language concept to have the notion of something like the US/Ascii
7-bit keyboard and set of characters and typical core set of
computer-relevant words as part of its definition. The 8-bit byte
structure is however more attuned to the way CPUs are designed--
here, especially since 4 times 8 equals 32-bit numbers--so there
is room for non-visible characters representing such as function
keys in the 8-bit region. This was the approach of most computers
leading up to the IBM PC that sort of set the standard for this.

For a programming language to be meaningful, its characters must
serve the purpose of clarity during programming. When we take the
typical fonts as Times New Roman and apply to programming, we find
that some of the characters are ambigious or not as clear as they
should be, in a context where the programming must be exact. We do
not consider it part of the computer concept that there is a huge
application translating presumed mistakes on the programmer's part
into correct programs. We want the programming language to
actually have control of the computer. In this regard, the font
must be helpful to the programmer's mind, it must guide attention
useful. In going from a font like Times New Roman to one like
Courier New, we see that some of the ambiguities get cleared up,
such as a sharper distinction between the digit 1 and the
noncapital letter 1. However, for intense programming, it can be
helpful to have yet more contrast. And since this is part of the
work with the computer even at assembly level, in G15 PMN there is
a core font, called RBOTFNT, which is entirely free from
ambiguities once one gets used to it, and which is defined by
fairly few pixels and which is ultra-sharp. The CAR card editor,
as written in G15 assembly in its tiny freeware core, just as the
CCW Crete Card Writer written in G15 PMN, uses this font to
emphasize that which has to be emphasized for programming to work
out smoothly. Similar efforts but more tuned to text processing
with human language have gone into the shaping of a Courier and
Courier Italic (as for numbers) font called the B9Font, which is
also part of the G15 0S. Other fonts can be made with fair ease,
of course, but these two run through the typical G15 PMN
applications.

G1l5 PMN is a programming language that comes along with its own
concept of CPU and disks, and which stays near to the physical
idea of the computer and its human-meaningful limits. In this
approach, we have also a formal language, in which theories can



get formal illustrations of some features of them, because the
assumptions are not hidden inside assumed structures of
application-size but rather the whole 'box' is pretty much defined
and knowable from the core and up to all its open source.

Through this whole configuration, the computer, with its keyboard,
mouse, display, CPU, RAM, disks, and programming language, permits
the control with input, output, or input/output, relative to of
all suitable peripheral units, including but not limited to:
backup devices, network modems, printers, other types of
keyboards/displays/mouse pointer devices [also combined], other
types of keyboards, robotic motors, servos, sensors, and cameras.

It is the proposal of me as author of it that we have with G15 PMN
what is in practice a more general programming language than
those languages which have been made in an attempt to 'abstractify
away' the RAM, the disks, the number sizes, and the CPUs, because
it is well-defined relative to a domain which is also well-
defined, and well-definedness allows it to go into the future in a
way which has maximalized meaningfulness.

Article text written: August 2025

The language can be installed

from www.gl5pmn.com and this

text is also found at
www.yogabdserver.org and at
yoga6d.org/library

The author, Aristo Tacoma,

can be contacted at berlinib@aol.com.

Earlier pen names for same
author includes Stein Reusch
Weber, Stein von Reusch, and
relates to the formal name
Stein Henning Reusch. Aristo
Tacoma is the active artist
name and editor name.



